AI at the Edge: Federated Learning for Greater Performance

Share via:


The classical machine learning paradigm requires the aggregation of user data in a central location where data scientists can pre-process it, calculate features, tune models and evaluate performance. The advantages of this approach include being able to leverage high-performance hardware (such as GPUs), and the scope for a data science team to perform in-depth data analysis to improve model performance.

However, this data centralization comes at a cost to data privacy and may also fall foul of data sovereignty laws. Also, centralized training…



Source link

Disclaimer

We strive to uphold the highest ethical standards in all of our reporting and coverage. We StartupNews.fyi want to be transparent with our readers about any potential conflicts of interest that may arise in our work. It’s possible that some of the investors we feature may have connections to other businesses, including competitors or companies we write about. However, we want to assure our readers that this will not have any impact on the integrity or impartiality of our reporting. We are committed to delivering accurate, unbiased news and information to our audience, and we will continue to uphold our ethics and principles in all of our work. Thank you for your trust and support.

Popular

More Like this

AI at the Edge: Federated Learning for Greater Performance


The classical machine learning paradigm requires the aggregation of user data in a central location where data scientists can pre-process it, calculate features, tune models and evaluate performance. The advantages of this approach include being able to leverage high-performance hardware (such as GPUs), and the scope for a data science team to perform in-depth data analysis to improve model performance.

However, this data centralization comes at a cost to data privacy and may also fall foul of data sovereignty laws. Also, centralized training…



Source link

Disclaimer

We strive to uphold the highest ethical standards in all of our reporting and coverage. We StartupNews.fyi want to be transparent with our readers about any potential conflicts of interest that may arise in our work. It’s possible that some of the investors we feature may have connections to other businesses, including competitors or companies we write about. However, we want to assure our readers that this will not have any impact on the integrity or impartiality of our reporting. We are committed to delivering accurate, unbiased news and information to our audience, and we will continue to uphold our ethics and principles in all of our work. Thank you for your trust and support.

Website Upgradation is going on for any glitch kindly connect at office@startupnews.fyi

More like this

For the First Time, AI Analyzes Language as Well...

The original version of this story appeared in Quanta...

La Liga Soccer: Stream Barcelona vs. Osasuna Live From...

When to watch Barcelona vs. OsasunaSaturday, Dec. 13 at...

Popular