Google says its breakthrough Willow quantum chip can’t break modern cryptography

Share via:


Experts believe that one day, quantum computers could make today’s systems of encryption utterly obsolete. But Google tells The Verge its new “breakthrough” Willow chip is nowhere near ready for that.

“The Willow chip is not capable of breaking modern cryptography,” Google Quantum AI director and COO Charina Chou tells The Verge.

A so-called “cryptanalytically relevant quantum computer,” or CRQC, could “jeopardize civilian and military communications, undermine supervisory and control systems for critical infrastructure, and defeat security protocols for most Internet-based financial transactions,” the White House warned in 2022, ordering that US agencies must transition to new systems to mitigate that risk by 2035.

But Willow is not a CRQC, according to Google. While the company does claim it can solve a computing challenge in five minutes that would take the world’s fastest supercomputer ten septillion years, Google has only produced 105 physical qubits worth of that computing power and suggests it would need millions to literally crack the codes.

“Estimates are we’re at least 10 years out from breaking RSA, and that around 4 million physical qubits would be required to do this,” Chou writes. She says Willow doesn’t change the timeline at all.

And though Chinese researchers have repeatedly claimed to discover new ways to break RSA encryption with much smaller quantum computers, ones with just a few hundreds or thousands of qubits, security experts have repeatedly been skeptical.

The RAND Corporation, a think tank famous for advising on US national security in the past, suggested in a 2023 editorial that the moment an RSA-breaking quantum computer exists, it’ll trigger a worldwide rush to defend against it:

“As soon as the existence of the CRQC becomes public knowledge — or is even considered plausible — and the threat becomes concrete, most vulnerable organizations will immediately move to upgrade all their communications systems to post-quantum cryptography.”



Source link

Disclaimer

We strive to uphold the highest ethical standards in all of our reporting and coverage. We StartupNews.fyi want to be transparent with our readers about any potential conflicts of interest that may arise in our work. It’s possible that some of the investors we feature may have connections to other businesses, including competitors or companies we write about. However, we want to assure our readers that this will not have any impact on the integrity or impartiality of our reporting. We are committed to delivering accurate, unbiased news and information to our audience, and we will continue to uphold our ethics and principles in all of our work. Thank you for your trust and support.

Popular

More Like this

Google says its breakthrough Willow quantum chip can’t break modern cryptography


Experts believe that one day, quantum computers could make today’s systems of encryption utterly obsolete. But Google tells The Verge its new “breakthrough” Willow chip is nowhere near ready for that.

“The Willow chip is not capable of breaking modern cryptography,” Google Quantum AI director and COO Charina Chou tells The Verge.

A so-called “cryptanalytically relevant quantum computer,” or CRQC, could “jeopardize civilian and military communications, undermine supervisory and control systems for critical infrastructure, and defeat security protocols for most Internet-based financial transactions,” the White House warned in 2022, ordering that US agencies must transition to new systems to mitigate that risk by 2035.

But Willow is not a CRQC, according to Google. While the company does claim it can solve a computing challenge in five minutes that would take the world’s fastest supercomputer ten septillion years, Google has only produced 105 physical qubits worth of that computing power and suggests it would need millions to literally crack the codes.

“Estimates are we’re at least 10 years out from breaking RSA, and that around 4 million physical qubits would be required to do this,” Chou writes. She says Willow doesn’t change the timeline at all.

And though Chinese researchers have repeatedly claimed to discover new ways to break RSA encryption with much smaller quantum computers, ones with just a few hundreds or thousands of qubits, security experts have repeatedly been skeptical.

The RAND Corporation, a think tank famous for advising on US national security in the past, suggested in a 2023 editorial that the moment an RSA-breaking quantum computer exists, it’ll trigger a worldwide rush to defend against it:

“As soon as the existence of the CRQC becomes public knowledge — or is even considered plausible — and the threat becomes concrete, most vulnerable organizations will immediately move to upgrade all their communications systems to post-quantum cryptography.”



Source link

Disclaimer

We strive to uphold the highest ethical standards in all of our reporting and coverage. We StartupNews.fyi want to be transparent with our readers about any potential conflicts of interest that may arise in our work. It’s possible that some of the investors we feature may have connections to other businesses, including competitors or companies we write about. However, we want to assure our readers that this will not have any impact on the integrity or impartiality of our reporting. We are committed to delivering accurate, unbiased news and information to our audience, and we will continue to uphold our ethics and principles in all of our work. Thank you for your trust and support.

Website Upgradation is going on for any glitch kindly connect at office@startupnews.fyi

More like this

Microsoft debuts Phi-4, a new generative AI model, in...

Microsoft has announced the newest addition to its...

Superfone Bags Funds To Offer App-Based Telephony To SMBs

SUMMARY Led by YourNest Venture Capital, the round also...

Carta is making it too difficult to cancel subscriptions,...

Running a startup can be expensive, requiring a...

Popular

Upcoming Events

Startup Information that matters. Get in your inbox Daily!