Swedish researchers develop world’s first wooden transistor ‘Timber’ with potential for biodegradable computing and implanting in living plants

Share via:

A team of researchers from the Wallenberg Wood Science Center has created the world’s first wooden transistor, a device that could have potential applications in biodegradable computing and implanting into living plant material.

The transistor is made of balsa wood, a species chosen for its structural stability, strength and ability to efficiently transport water and nutrients. Pieces of balsa wood were treated with heat and chemicals to remove much of the lignin, making more room for conducting materials. The remaining cellulose-based structure was then coated with a conducting polymer known as PEDOT:PSS, which was found to be the most effective in part because it is water soluble. The polymer decorated the insides of the wood’s pores, allowing the wood to conduct electricity along its fibers.

To assemble the transistor, the researchers used three pieces of conducting wood arranged in a T shape, with the top of the T serving as the transistor channel, and a source and drain at either end. The channel was sandwiched between two “gate” pieces, forming the leg of the T.

At the points of contact between the channel and the gates, the researchers layered a gel electrolyte. A voltage applied to the gates delivers hydrogen ions from the electrolyte into the polymer, causing a chemical reaction that changes the conductivity of the polymer. This reaction is reversible, allowing for the on-off operation of the wood-based transistor.

While the wooden transistor is not expected to serve as the basis for complex electronics, it may find uses as an on/off switch for other components, such as solar cells, batteries or sensors that may be incorporated into wood, dead or living. The researchers say higher currents and smaller devices should be possible to engineer, and the transistor’s self-supporting property could be an advantage in creating sustainable devices. The team is also exploring the possibility of integrating electronic functionality into living plants.

“This is really just the beginning,” says Daniel Simon, a professor of bioelectronics at Linköping University who was not involved in the work. The wooden transistor, which is 3 centimeters across and switches at less than one hertz, was created in the spirit of collaborative curiosity.

“It was very curiosity-driven,” says Isak Engquist, a professor at Linköping University who led the effort. “We thought, ‘Can we do it? Let’s do it, let’s put it out there to the scientific community and hope that someone else has something where they see these could actually be of use in reality.’”

Sreejit Kumar
Sreejit Kumar
Hi, I'm Sreejit Kumar, a journalist with a Master's degree in Journalism. Through my education and professional experience, I have developed a keen eye for detail and a passion for uncovering the truth. As an author for this news website, I am committed to delivering accurate, timely, and engaging stories that inform and entertain our readers.

Popular

More Like this

Swedish researchers develop world’s first wooden transistor ‘Timber’ with potential for biodegradable computing and implanting in living plants

A team of researchers from the Wallenberg Wood Science Center has created the world’s first wooden transistor, a device that could have potential applications in biodegradable computing and implanting into living plant material.

The transistor is made of balsa wood, a species chosen for its structural stability, strength and ability to efficiently transport water and nutrients. Pieces of balsa wood were treated with heat and chemicals to remove much of the lignin, making more room for conducting materials. The remaining cellulose-based structure was then coated with a conducting polymer known as PEDOT:PSS, which was found to be the most effective in part because it is water soluble. The polymer decorated the insides of the wood’s pores, allowing the wood to conduct electricity along its fibers.

To assemble the transistor, the researchers used three pieces of conducting wood arranged in a T shape, with the top of the T serving as the transistor channel, and a source and drain at either end. The channel was sandwiched between two “gate” pieces, forming the leg of the T.

At the points of contact between the channel and the gates, the researchers layered a gel electrolyte. A voltage applied to the gates delivers hydrogen ions from the electrolyte into the polymer, causing a chemical reaction that changes the conductivity of the polymer. This reaction is reversible, allowing for the on-off operation of the wood-based transistor.

While the wooden transistor is not expected to serve as the basis for complex electronics, it may find uses as an on/off switch for other components, such as solar cells, batteries or sensors that may be incorporated into wood, dead or living. The researchers say higher currents and smaller devices should be possible to engineer, and the transistor’s self-supporting property could be an advantage in creating sustainable devices. The team is also exploring the possibility of integrating electronic functionality into living plants.

“This is really just the beginning,” says Daniel Simon, a professor of bioelectronics at Linköping University who was not involved in the work. The wooden transistor, which is 3 centimeters across and switches at less than one hertz, was created in the spirit of collaborative curiosity.

“It was very curiosity-driven,” says Isak Engquist, a professor at Linköping University who led the effort. “We thought, ‘Can we do it? Let’s do it, let’s put it out there to the scientific community and hope that someone else has something where they see these could actually be of use in reality.’”

Disclaimer

At StartupNews.fyi we strive to uphold the highest ethical standards in all of our reporting and coverage. We want to be transparent with our readers about any potential conflicts of interest that may arise in our work. It’s possible that some of the investors we feature may have connections to other businesses, including competitors or companies we write about. However, we want to assure our readers that this will not have any impact on the integrity or impartiality of our reporting. We are committed to delivering accurate, unbiased news and information to our audience, and we will continue to uphold our ethics and principles in all of our work. Thank you for your trust and support.

Sreejit Kumar
Sreejit Kumar
Hi, I'm Sreejit Kumar, a journalist with a Master's degree in Journalism. Through my education and professional experience, I have developed a keen eye for detail and a passion for uncovering the truth. As an author for this news website, I am committed to delivering accurate, timely, and engaging stories that inform and entertain our readers.

More like this

Gig Workers in California to receive back payments for...

Uber, Lyft, DoorDash, and other app-based ride-hail and delivery...

Over 60% of GCC businesses adopting Artificial Intelligence: McKinsey

According to a recent report by McKinsey, more than...

Shopify introduces Shop Cash rewards program for Shop app...

Shopify has unveiled a new rewards program called Shop...

Popular

Upcoming Events

Startup Bootcamp - Entrepreneurship Alchemy | May 18 - July 6

Transforming Ideas into Gold: Learn The Entrepreneurship Alchemy"

The Startup Mixer - Bengaluru | June 04

Pushstart presents The Startup Mixer, which is coming to Bengaluru on 4th June (Sunday).

The Startup Mixer - Mumbai | June 04

Pushstart presents The Startup Mixer, which is coming to Mumbai on 4th June (Sunday).

CoinDCX Lucknow Chapter - The Power of Web3 Communities | June 03

With the rapid growth of Web3 technologies, such as blockchain and crypto, it has...

Startup Information that matters. Get in your inbox Daily!

325th Startup Meetup @ Delhi 3rd June - Sold Out